CR Yamabe conjecture – the conformally flat case

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A fully nonlinear version of the Yamabe problem on locally conformally flat manifolds with umbilic boundary

We prove existence and compactness of solutions to a fully nonlinear Yamabe problem on locally conformally flat Riemannian manifolds with umbilic boundary.

متن کامل

Mass endomorphism and spinorial Yamabe type problems on conformally flat manifolds

Let M be a compact manifold equipped with a Riemannian metric g and a spin structure σ. We let λ+min(M, [g], σ) = inf g̃∈[g] λ + 1 (g̃)V ol(M, g̃) 1/n where λ+1 (g̃) is the smallest positive eigenvalue of the Dirac operator D in the metric g̃. A previous result stated that λ+min(M, [g], σ) ≤ λ + min(S n) = n 2 ω 1/n n where ωn stands for the volume of the standard n-sphere. In this paper, we study t...

متن کامل

Minimality in CR geometry and the CR Yamabe problem on CR manifolds with boundary

We study the minimality of an isometric immersion of a Riemannian manifold into a strictly pseudoconvex CR manifold M endowed with the Webster metric (associated to a fixed contact form on M), hence formulate a version of the CR Yamabe problem for CR manifolds-with-boundary. This is shown to be a nonlinear subelliptic problem of variational origin.

متن کامل

Quasi-Conformally Flat Mapping the Human Cerebellum

We present a novel approach to creating flat maps of the brain. Our approach attempts to preserve the conformal structure between the original cortical surface in 3-space and the flattened surface. We demonstrate this with data from the human cerebellum. Our maps exhibit quasiconformal behavior and offer several advantages over existing approaches.

متن کامل

Quasi - Conformally Flat Mapping the HumanCerebellumMonica

We present a novel approach to creating at maps of the brain. It is impossible to atten a curved surface in 3D space without metric and areal distortion; however, the Riemann Mapping Theorem implies that it is theoretically possible to preserve conformal (angular) information under attening. Our approach attempts to preserve the con-formal structure between the original cortical surface in 3-sp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pacific Journal of Mathematics

سال: 2001

ISSN: 0030-8730

DOI: 10.2140/pjm.2001.201.121